Sky Imager Solar Forecasting for Microgrid Optimization

Bryan Urquhart November 16, 2011

Why Solar Power?

- Reduce reliance on fossil fuels
- Reduce energy imports
- Renewable Portfolio Standards
- Compared to wind:
 - Better co-location near loads (distributed PV)
 - Output more predictable
 - Better correlation to load peak → more valuable power
 - But: higher energy production cost

Why Solar Forecasting?

- Variable resources require reserve power
- Grid Operation
 - Forecasts can help to determine how to schedule generation and orchestrate power transmission
- Smart grid optimization
 - solar power production forecasts
 as input for generation scheduling
- Solar + Storage system optimization

Renewables on the grid (35%)

Solar Forecasting

- Solar forecasting critical for renewables integration
- Wind forecasting established (yet difficult); for solar:
 - different techniques required: weather models cannot resolve clouds
 - shortage of solar ground measurements

Technology	Forecast Horizon	Spatial Resolution	Spatial Coverage
Meteorological Models	> 5 hrs	3 km horizontal	Global/Continental
Satellite Imagery	30 min - 5 hrs	1 km ² at nadir	Continental
Network of point sensors	up to 5 hrs		
Sky Imager	30 sec - 30 min	100 m^2	15 km^2

Solar Forecast Performance

Ground-Image Based Forecasting

- High time resolution coverage
 - Limited by computing power
- Granular spatial resolution
 - Multi-megapixel cameras
- Reasonable coverage
 - ~15 km² cloud field dependent
- Short time-horizon
 - 10 to 20 minutes

Cloud Decision

- Ratio of red content to blue content
 - Small values indicate clear sky
 - Values near unity indicate cloud

Cloud Mapping

- Cloud projection
 - Plane formed by cloud base
 - Ceilometer used for height

Capturing ramps

Cloud Motion

 Cross correlate image subsection within prescribed neighborhood

$$t = t_o - 30 sec.$$

$$t = t_o$$

Cloud Map

Ground Irradiance Map

UCSD Microgrid

UCSD Microgrid – Living Laboratory

• Generation:

- 42 MW peak load
- 30 MW NG CCHP plant generates 80% of annual demand at 61% efficiency
- 1.2 MW of PV
- 40,000 ton hr thermal energy storage

• Distribution:

- Owns 69 kV substation
- -96×12 kV underground feeder circuits 4×12 kV distribution substations
- Meters 50,000 energy data points

Committed to:

- Power Analytics / Viridity Scheduler/Optimizer
- 2.8 MW fuel cell using methane gas
- 1.8 MW / 11.2 MWh electric energy storage
- 1.9 MW expansion of PV with CREBs financing
- 2.0 MW / 8 MWh of PV integrated storage with CA SGIP incentives
- \$250M/yr building expansion and \$72M, 3 Yr EE program

Microgrid Architecture

Microgrid Modeling and Simulation

- Entire campus has been modeled
 - Including PV arrays
- Optimizer aggregates over 67,000 signals and generates a set of schedules for the next hour
 - Includes solar power forecast
- Simulator runs schedules and checks for violations of power quality
- Control software engages changes according to the selected schedule
- Collaborative University and Industry Effort
 - UCSD, OSISoft, Power Analytics, Viridity & U.S.DOE

Model for building, 330 kW PV

Sky Imager for Storage Optimization

- UCSD and Sanyo have partnered on a 31.5kW PV + 31 kWh Li-ion storage system
 - UCSD provides solar forecast input for charge/discharge optimization

Es Est	Optimization with PV Power Output and Load Forecast	Off-Peak/On-Peak without PV Power Output and Load Forecast
Annual Energy Bill Cost Reduction [\$]	33,200	30,500
Number of Cycles at 80% DoD [cyc/yr]	212	365
Battery Lifetime [yrs]	14.2	8.2
Fixed Cost Simple Payback Time [yrs]	5.7	6.2
Total Profit at End of Battery Lifetime (Annual Energy Bill Savings x Battery Lifetime – Fixed Costs) [\$]	281,000	60,000

UCSD Operational Forecasting

Acknowledgements

Thank you for your time

visit us: solar.ucsd.edu microgrid.ucsd.edu

Cloud Shadow

- Shadow is projected to ground from binary cloudmap using solar angles
 - binary: clear or cloudy
- Sky condition mapped to ground ("shadowmap")
 - -10×10 m grid cells
 - Topography included (SRTM1)

topography not shown in shadowmap illustration

Sky Condition Forecasting

- Binary cloudmap → binary comparison metric
 - Condition is clear or cloudy
- Sky imager derived condition determined from projected cloud shadows
- For pyranometer measurements:

$$clear \equiv kt > 0.7$$

$$cloudy \equiv kt \leq 0.7$$

$$kt = GHI/GHI_{csk}$$

• Four possible outcomes: Sky Imager Forecast

Measured Clear Cloudy

Measured	Clear	Cloudy
Clear	clr _m clr _f	clr_mcld_f
Cloudy	$cld_m clr_f$	cld_mcld_f

match:

Positive

Negative

5-min Forecast Results

